
Integration Architecture

Enterprise Architecture Page 1

Introduction
In 2002 I was employed to advise Chase

retail bank on its Web services strategy

(my eventual recommendation was that it

didn‟t make sense for it to have one). As

part of the work, we interviewed people in

different parts of the Chase Empire:

deposits and loans; credit cards; debit

cards; and mortgages. They all had big

offices in impressive buildings in

downtown Manhattan. Then we needed to

interview retail financing. This is the

department that provides loans for cars

and small home improvements. They

weren‟t in Manhattan, or even New York,

but on Long Island. They weren‟t in an

impressive building; in fact they were in

what we in the UK would call a Nissan

hut. We started the interview by trying to

explain what Web services were and why

they might be important to Chase. The line

we took for this was that they could be

used for integrating the many different

information systems (a legacy of mergers

between Chase, Chemical Bank and

Manufacturers Hanover over many years)

in service at the bank. “Aha”, said the

patient financing manager, “in that case

we don‟t need to say any more because we

integrated all that last year.” We were

dumbfounded, as to our knowledge

integration was a continuing problem at

Chase, as at every other large bank in the

Western world. “How was that done?” we

asked. “We did that with the portal” he

told us. He had been sold, by the IT

department, that participating in the portal

project would solve the Chase integration

problem.

There seems to be a lot of confusion about

integration, the cynical among us would

say that this was deliberately fomented by

the marketing departments of some

vendors (and sometimes those advising IT

departments). However, in fairness to the

vendors and consultants, the confusion is

probably deeper than that. There is an

almost irresistible temptation, when faced

with the problem of integrating two

existing information systems, to solve it

by building a third application. But the sad

truth is that such a „composite‟ application

actually requires an integration capability

to be in place before it can be built,

because it itself is an application that is to

integrate with two others. It helps to be

clear what the aim of integration is.

Another story will help here. We were

living in New York and my wife‟s nephew

Diarmuid came to stay, from Ireland, for

the summer and needed a job. The

Fitzpatrick hotel chain in New York is

Irish and my wife was able to use a friend

of a friend to get Diarmuid work there,

from Memorial day to Labor day. He duly

arrived, watched the Big Lebowski on the

DVD player (which he watched for every

night throughout the summer) and went

the next morning to his job. That night we

asked him what his job was. “My job is to

take the reservations entered on the Web

site during the day and enter them into the

actual reservation system” he said.

Figure 1 Diarmuid’s summer job

There, in a nutshell, is the objective of

most integration, to eliminate Diarmuid.

Some people call this the elimination of

swivel chair integration, so called because

Diarmuid had to interact with one system

to read a reservation and then swivel to

another to enter it. Once all the swivel

chair integration has been eliminated, it

would then make sense to go on to

eliminate batch processing (except for data

integration). And once all the batch has

Integration Architecture

Enterprise Architecture Page 2

been eliminated, it would then make sense

to enable composite applications and

orchestration. But for now, in all the

enterprises I deal with, eliminating

Diarmuid is the real need.

The integration needed to replace swivel

chair is really very simple. But you will

need some convincing that this is the case.

We have to convince you that the only

scenario to be covered is that of a message

leaving one information system as a result

of a transaction completing, and then

entering another information system to

start a transaction. This is shown in the

diagram below.

So
u

rce
A

p
p

licatio
n

Target
A

p
p

licatio
n

Message out

Message in

Figure 2 The only integration scenario

This is a „fire and forget‟ scenario. If the

message out from the source application

fails to arrive at the target application, then

it is not the source application‟s problem

to re-deliver it. Similarly, if the target

application does not successfully apply the

message, that is not the source

application‟s problem to fix (just as when

Diarmuid entered a reservation, if there

wasn‟t in fact a spare bed, that was

Diarmuid‟s problem, not in the Web

reservation system‟s problem).

If the source application does want the

target application to do something, then

the „three transaction‟ pattern has to be

used. This case is a minimal orchestration

problem and needs at least two integration

interfaces to be used. We call this the

„three transaction model‟ as shown below.

So
u

rce
A

p
p

licatio
n

Target
A

p
p

licatio
n

1

3

2

Figure 3 Three Transaction Model

This scenario is, for instance, the one used

by the Base24 application that manages

the majority of ATM transactions in the

world. When a request to dispense, say,

£100 arrives at the ATM device handler

(the source application), it starts a timer,

enters a record in the database and then

emits a message towards the bank account

(the target application). That is transaction

one. The bank account listens for

messages from tellers, automated ones in

this case, and authorises the transaction

and emits a message to that effect. That is

transaction two. Finally, the device

handler is listening for messages from the

banks and when it receives one, it looks up

the record in the database, cancels the

timer, and uses the information from the

database to connect to the ATM session

and dispense the cash.

In order for this to work correctly, we

have to be using transactional messaging.

That is, the PUTs and GETs to the queues

implied by the processing, have to be part

of the two phase commit transactions at

the applications. This is described in more

detail in the basic engineering paper.

The term application used above is a little

too imprecise. In the application paper we

distinguish between the user interaction

part, which we call the application, and the

resource management part (combining

business and data logic), which we call the

resource manager. The combination of an

application, resource manager and agents

to use the application is an information

system. It is very important that we

convince you that the integration is

between the two resource managers, not

between a application and a resource

manager or an application to an

application. These scenarios are illustrated

below.

Integration Architecture

Enterprise Architecture Page 3

R
eso

u
rce

M
an

ager

R
eso

u
rce

M
an

ager

Intended use

Application Application

Integration

Intended use

Communication

1 13

2

4

Figure 4 Interaction Scenarios

 The diagram shows four different

scenarios.

1. Intended Use. This is where the

application part of the information

system (that is, the agent using the

application and the interaction

logic) makes stateless requests of

the resource manager for which it

is written. If the request is for a

change then that is business event

handling, if the request is for

information then that is business

content handling.

2. Integration. Where a business

event in one resource manager

causes a business event to occur in

the other.

3. Composite Application. Where an

application intended originally for

use with one resource manager

also interacts with another. Note

that it is not possible for a

transaction (PUT or POST)

originated in the application to

span two resource managers

(distributed two phase commit is

not allowed in this architecture,

see the paper on BASE versus

ACID).

4. Communication. If the application

part of one information system

interacts with the application part

of another, then that is

communication, not business

event or content handling.

What this shows is that, for the message

passing to be integration, the message has

to go from the resource manager of one

information system to the resource

manager of the other (business logic to

business logic). This is a golden rule of

integration.

You may be wondering, what about the

scenario where the source application

requests some information from the

target? This is illustrated below.

So
u

rce R
eso

u
rce

M
an

ag

Target R
eso

u
rce

M
an

ager

Response

Request

Figure 5 Forbidden Scenario

We have captioned this „the forbidden

scenario‟ because it violates a golden rule

of information systems design which is

that each resource manager is autonomous

and asynchronous. This golden rule

ensures that systems can scale and that

systems are loosely coupled. The reason

this scenario violates the rule is that the

request and response is clearly

synchronous, violating asynchrony, and

the semantics of the request has to be

understood by the responder and vice

versa, violating autonomy. Nevertheless, I

often see this scenario in use, for instance

using RPC as an integration approach.

What tends to happen is that, as the

systems scale, the source RM finds that it

cannot wait for the target RM so it caches

responses. However, source RM now no

longer knows when its cache is stale, so it

asks for a message from the target RM

when the target changes. And that gets us

back to our original integration scenario.

We have now, I hope, established the

following. Integration has only one

scenario, which is when an asynchronous

message, representing a business event

that has completed, is emitted by one

resource manager and causes a business

event to be started at another resource

manager. So, the essence of integration is

causality. Indeed, in the front middle back

view of the value chain, it is integration

that allows an event in the front to cause

an event in the middle, see the front

middle back paper.

Now that we know what integration has to

Integration Architecture

Enterprise Architecture Page 4

do (get a message from a source to a

target), we need to analyse how

integration does it. In short, I believe that

we need to achieve both interoperability

and also loose coupling. Interoperability

means that there is a physical path from

the protocols and formats of the sender to

the protocols and formats of the receiver.

This is probably non-controversial. Loose

coupling means that if we change the

sender we don‟t have to change the

receiver. For me this is a semantic

problem. Converting protocols and

formats (say XML over SOAP to JSON

over HTTP) is a syntactic problem – I

don‟t have to understand the contents of

the messages to do this. On the other hand,

to achieve loose coupling I have to be able

to transform the contents of the messages.

For instance, if the source uses the XML

<name>John Schlesinger</name> and the

target uses <given name>John</given

name> and <family

name>Schlesinger</family name> I have

to know enough about the meaning both to

be able to transform one to the other. In

fact, I would go so far as to say that the

real problem of integration is semantics,

not interoperability. It is as though I was

changing into my running gear to run a

marathon and found that the changing

room was locked. It looks like my problem

is getting out of the changing room, but

my real problem is to run the marathon.

Interoperability is a relatively small

problem we have to get past in order to

tackle the real problem of managing

semantics. Separating syntax

(interoperability) from semantics

(transforming messages) is at the heart of

integration.

The golden rule that ensures we also make

the separation is what we call the rule of

three flows and two transforms. Let‟s start

with the flows.

I have been careful to talk about messages

representing business events. A business

event is a coarser grained thing than, in

general, an API to a resource manager. For

instance, SAP can emit IDOCs

(intermediate documents) to enable event

based integration of SAP with either other

SAP systems or with non-SAP systems.

When Lufthansa integrated their SAP

system with an aero-parts exchange for

planned maintenance, they found an IDOC

that was exactly for the event they wanted.

However, two important pieces of

information were missing. So they wrote a

little ABAP process that ran when the

IDOC was triggered, transformed the

IDOC to the SITA format the exchange

wanted, got the two extra pieces of

information and put them in the SITA

message and then sent it. This turned the

API provided by SAP into a Lufthansa

business event. An IDOCs are the coarsest

grain interface to SAP (there are over

twenty kinds of interfaces to SAP with

IDOCs, RFCs and BAPIs being the ones

most commonly used for integration). In

general then, to get a message representing

a business event out of a resource manager

we are going to need two things: an API

that allows us to be triggered by the

completion of a business event; and a

stateless flow that fields that trigger and

enriches it as required. This is illustrated

below.

So
u

rce Reso
u

rce
M

an
agar

Stateless In
tegratio

n

Flo
w

API Call

Trigger

API Call

Business Event

Figure 6 Generating a Business Event

The reason the flow is called stateless is

because each time it runs it remembers

nothing from its previous invocation. This

Integration Architecture

Enterprise Architecture Page 5

is true in almost all cases. The exception is

when the trigger for an event is an adapter

that polls a database table for an event. In

this case, the flow that runs is stateless but

the polling is not. The polling part has to

remember the high water mark of the table

from when it last polled (to ensure that it

sees all events and doesn‟t process an

event twice). The polling part is doing

what the SAP IDOC manager does when it

triggers a ABAP function module.

Getting an event into a resource manager

is the same thing but the other way

around, as shown below.

So
u

rce R
eso

u
rce

M
an

agar

Stateless In
tegratio

n

Flo
w

API Call

Commit

API Call

Business Event

Figure 7 Handling a Business Event

As it may be necessary to make more than

one update to a resource manager to

complete the handling of the business

event, in general the stateless flow has to

run as a transaction. For example, when I

was at iWay Software we developed SAP

implementations of 15 OASIS business

messages. The flows, on average, took

five RFC calls per message to handle the

message with a maximum of twelve and

minimum of two. One message had to

make two updates to SAP. At iWay we

could run the database, MQ, JMS, MSMQ,

SAP, IMS and CICS adapters

transactionally. However, do not make the

mistake of thinking that an adapter can run

as a two phase commit between receiving

the message and committing it. I used to

think that was a good idea but having to

design an adapter framework soon

corrected that view, see the basic

engineering paper for more information.

We now have two flows, the one to get a

message out of a resource manager and,

symmetrically, the one to get a message

into a resource manager. This is illustrated

below.
Target R

eso
u

rce
M

an
agar

Stateless In
tegratio

n

Flo
w

API Call

Commit

API Call
Event In

So
u

rce
 R

e
so

u
rce

M

an
agar

Stateless In
tegratio

n

Flo
w

API Call

Trigger

API Call

Event Out

Figure 8 Business Event Flows

The golden rule associated with this

diagram is that the flows that generate and

handle business events are owned by the

resource managers that they generate or

handle events for. This golden rule was the

one violated by the original enterprise

application integration products. For

example, it was typical when I was

working for SeeBeyond for a collaboration

to be written that did the following.

Target Reso
u

rce
M

an
agar

API Call

Commit

API Call

So
u

rce Reso
u

rce
M

an
agar

C
o

llab
o

ratio
n

API Call

Trigger

API Call

Figure 9 Enterprise Application Integration

Approach

This was not just the way SeeBeyond did

it, so did most of the EAI tools and

certainly the most commonly used one,

COBOL. This approach grossly violates

the ownership rule and therefore frustrates

loose coupling. However, we still need a

flow in the middle because we need to be

able to route messages from multiple

sources to multiple targets. For example,

the Merrill Lynch straight through

processing hub had twelve sources and

about six targets. We will discuss the

ownership of the middle flow later, but

here is a diagram of the middle flow

routing a message to two destinations.

Integration Architecture

Enterprise Architecture Page 6

Target Reso
u

rce
M

an
agar

Stateless In
tegratio

n

Flo
w

API Call

Commit

API CallEvent InSo
u

rce Reso
u

rce
M

an
agar

Stateless In
tegratio

n

Flo
w

API Call

Trigger

API Call

Event Out

Target Reso
u

rce
M

an
agar

Stateless In
tegratio

n

Flo
w

API Call

Commit

API Call

Event In

Stateless In
tegratio

n

Flo
w

Figure 10 Middle Flow for Routing

 An example of this kind of fan out is

when an event is routed both to the next

stage of the value chain and also to a data

warehouse. Another of violating of the

golden rule of adapter ownership occurred

when I was consulting at Merrill Lynch I

was asked by the CTO to look at a system

they had built for integrating the bond

trading platforms with a joint venture

called BondHub. The idea was that bond

traders would ask BondHub for a bond

with certain characteristics (yield,

maturity, and rating) and this would be

relayed to the market makers who would

respond with quotes. BondHub gave the

best three to the requester who could then

trade with one of the three responders. To

make this work, the Merrill Lynch

BondHub application had to interface to

three bond trading systems. To do this, the

developers created interface adapters to

each system as shown below.

B
o

n
d

Trad

in
g A

A
d

ap
ter A

B
o

n
d

 H
u

b

G
atew

ay

B
o

n
d

Trad

in
g B

A
d

ap
ter B

B
o

n
d

Trad

in
g B

A
d

ap
ter B

Figure 11 BondHub Architecture

The problem that the CTO wanted me to

look at was that BondHub was very brittle,

it kept failing. It turned out that any time

the bond trading systems changed they

broke the adapters. As these trading

systems changed all the time, the adapters

were constantly breaking and so causing

BondHub to fail. The solution was to

create one more adapter, a technical issue,

and then changing the ownership of the

existing three adapters, an organisational

issue and, finally, putting in place

agreements between BondHub and the

three trading systems, a cultural issue. In

general, I find that integration is much

more a cultural and organisational

problem than a technical problem. After

these changes the architecture was as

follows.

B
o

n
d

Trad

in
g A

A
d

ap
ter A

B
o

n
d

Trad

in
g B

A
d

ap
ter B

B
o

n
d

Trad

in
g B

A
d

ap
ter B

B
o

n
d

 H
u

b

G
atew

ay

A
d

ap
ter B

H

Agreement B

Figure 12 BondHub Fixed

The problem we still have is that, even if

the source and target resource managers

agree on syntax (they are both using

HTTP and JSON say), they are unlikely to

agree on the format of the message.

Indeed, if this is a value chain causality

interface, the event out could be a different

event from the event in. For instance,

when a foreign exchange trade is executed

it causes a change to the real time risk of

that trading desk. Similarly, the form of a

trade execution is not the same as the form

of a data warehouse load. We have our

three flows but we don‟t have a transform

yet from the source to the target format.

The naïve approach is to insert a single

transformation from source to target. This

achieves the aim of interoperability, it

completes the path from source to target,

but it does not achieve the aim of loose

coupling. To illustrate this consider the

Integration Architecture

Enterprise Architecture Page 7

case above of one source and two targets.

Assume we put the transform after the

routing flow or we have to have two

routing flows. When the source changes,

we must change the transforms for both

targets. We are also going to have to

change the routing flow to accommodate

the changes to the message. In order to

achieve loose coupling we need two

transforms, one before the routing flow to

put the incoming event into a standard

form, and one after the flow to put the

event into the target form. Now we have

loose coupling. This is illustrated below.

Target R
eso

u
rce

M
an

agar

Sta
te

le
ss In

te
gra

tio
n

Flo

w

API Call

Commit

API CallEventSo
u

rce R
eso

u
rce

M
an

agar

Stateless In
tegratio

n

Flo
w

API Call

Trigger

API Call

Event

Target R
eso

u
rce

M
an

agar

Sta
te

le
ss In

te
gra

tio
n

Flo

w

API Call

Commit

API Call

Event

Sta
teless In

tegra
tio

n

Flo
w

Tra
n

sfo
rm

Tra
n

sfo
rm

Tran
sfo

rm

Figure 13 Inserting Transforms

For each interface, from source to target,

there are now three flows and two

transforms. This is more clearly illustrated

below.
Service Flo

w

So
u

rce

Ta
rget

Tra
n

sfo
rm

Tra
n

sfo
rm

Service Flo
w

R
o

u
tin

g
E

n
rich

m
en

t

Private
Interface

Public
Interface

Syntactic
Adapter

Semantic
Adapter

Figure 14 Three Flows Two Transforms

It is tempting at this point to declare the

middle part of the diagram above to be an

enterprise service bus and conclude that

the problem of integration is now solved.

This, indeed, is precisely the specious

argument of those that push the term ESB.

Unfortunately, there is a problem.

Integration is an organisational and

cultural problem. There is a limit of scope

of such a broker. For it to be possible to

broker between two applications, the

owner of the broker must also be the

owner of the source and the target. This is

because the essence of such semantic

broking is that the agreement is between

the end points and the broker, not between

the end points. But for that to work, both

end points must completely trust the

broker. Such complete trust is only

conferred by ownership.

The term I like to use for a broker that

manages transformation and routing is a

semantic hub. The limit of scope of a

semantic hub is a domain of ownership

(see the one level enterprise paper).

There is also a strong tendency, once the

concepts above have been grasped, to

build the hub straight away. This, at its

worst, is the „build it and they will come‟

approach. Unfortunately, in general, they

won‟t. In any case, you cannot safely build

the hub if you don‟t have an organisation

to run and manage it (integration is an

organisational problem after all).

In the general case, then, the integration

end points are in different domains, the

domains have not been built and there are

no hubs. In this case we have to integrate

using the point to point approach shown

below.

Service Flo
w

So
u

rce

Target

Tran
sfo

rm

Tran
sfo

rm

Service Flo
w

Agreement

Figure 15 Point to Point Messaging

The diagram shows the approach that we

took for BondHub. There is a missing

middle flow, because the message is only

going to one place, but there are still flows

at each end and two transforms. This is the

approach you have to use as you build up

integration between end points in different

domains. However, the end goal of

integration, once the architecture is fully

realised, is to be able to put any service

(that is, resource manager) on any channel

of access. To achieve that, the domains

have to implement both hubs and

Integration Architecture

Enterprise Architecture Page 8

gateways. Point to point messaging cannot

be eliminated between domains, but what

it looks like when the enterprise is fully

integrated is shown below.

Se
rvice Flo

w

So
u

rce

Target

Tran
sfo

rm

Tran
sfo

rm

Service Flo
w

Agreement

G
atew

ay

G
atew

ay

Tran
sfo

rm

Tran
sfo

rm

R
o

u
tin

g

R
o

u
tin

g

Source Domain Target Domain

Figure 16 Fully Integrated Messaging

Between Domains

About John Schlesinger

John Schlesinger is a Principal at Atos Consulting where he leads its Enterprise Architecture

practice. John is an advisor to enterprises specialising in middleware and integration

architecture. He has lead integration architecture development in retail banks, investment

banks, retailers and manufacturing, both for integrating applications and for integrating

information.

John has worked both as a consultant and also as a developer with software companies. He

has taken over two dozen program products to market at IBM, Information Builders, One

Meaning, SeeBeyond and iWay Software. These products included the world’s most

successful commercial software (CICS) and the world’s most successful data middleware

(EDA/SQL). John also led the Architecture department at Dun and Bradstreet when its IT

department went global.

A member of the ACM and the IEEE, John has an MA in Physics and Philosophy from Oxford

University and a Post Graduate Diploma in Software Engineering from Oxford University.

John has spoken at numerous conferences including the CIO Cruises run out of New York,

during one of which he was the first speaker on after the collapse of the World Trade Towers

in 2001.

John can be contacted at john.schlesinger@atosorigin.com

