
Basic Information Engineering

Enterprise Architecture Page 1

Introduction
This is a short essay on some basics of

information systems engineering. The

topics covered are:

 Listener Dispatcher Handler: the

fundamental middleware pattern

 ACID - Two Phase Commit: the

fundamental capability of application

middleware and resource management

 Transactional Messaging: the

fundamental capability of messaging

middleware

 Transactional Adapters: the

fundamental capability of integration

middleware, nested transactions

 BASE: the fundamental capability of

master data management

 Normalisation: the fundamental

capability of record keeping database

design

 Facts and Dimensions: the

fundamental capability of reporting

database design

These are the fundamental engineering

concepts an Enterprise or Solution

Architect needs to keep in mind when

creating solutions for information systems.

These concepts form the constraints to

information systems architecture in the

same way that structural engineering

concepts form the constraints to building

architecture.

Listener Dispatcher
Handler

All middleware, with the exception of

agents which arguably are end-ware rather

than middleware, has to be able to listen

for events. Over the years since 1969,

when IBM CICS was announced and it

could be said that middleware was born,

all middleware software systems have

implemented the same basic pattern,

which is illustrated below.

Listen

Dispatch

Handle

Payload

Message

Protocol

Header

Context

Figure 1 Listener Dispatcher Handler

The bottom level of the middleware is a

listener. This listens for an event on a

protocol. When an event is detected, the

listener‟s job is to start the processing of

the event in a thread of work. There are

several different models for the way

listeners do threading, of which the two

main ones are: the TCP model, which is

synchronous; and the MQ model, which is

asynchronous.

In the TCP model the middleware listens

then spawns. That is, it listens for a

connection request on a well known port,

and when it gets one it spawns a new

thread on a banal port (or forks a process,

depending one whether you are

multiprocessing or multitasking), passes it

the connection, and then goes back to

listening. The activity diagram below

illustrates the TCP listener.

Worker
Thread

Listener
Thread

Connect

Read
Message

Start Thread

Pass
connection

Reply

Dispatch and
Handle the message

Figure 2 TCP Listener

In the MQ model, the middleware spawns

then listens. That is, when the middleware

starts, it spawns as many threads as there

are queues to manage and then starts a

listener for each queue. The gross

Basic Information Engineering

Enterprise Architecture Page 2

difference between the two models

explains why much synchronous

middleware (Tomcat, Apache, IIS and so

on) does not support queuing very well.

The MQ listener is illustrated below.

Listener
Thread

Start up
Thread

Read
configuration

Read
Message

Start Thread

Dispatch and
Handle the message

Figure 3 MQ Listener

The first work usually done on the worker

thread is to dispatch the message. The

reason why this is not always the first

work is that some middleware runs

cryptography after listening but before

dispatching. The cryptography can decrypt

the message if all or part of it is encrypted

and can verify a signature by taking a

message digest and using a public key to

decrypt a signature token. Similarly, some

middleware, notably on IBM mainframes,

authenticates before dispatching, which is

useful for minimising the impact of denial

of service attacks. After decryption, the

message may also need decompression.

Then the header of the message is stripped

from its payload and the headers and

payload are sent to the dispatcher. The job

of the dispatcher is to choose which

handler to run for the event. In Web

middleware the dispatcher uses the HTTP

headers, the URL and the MIME Type to

determine which handler to run. In Ruby

on Rails the process of working out which

handler to run for a URL is called

„routing‟. In our terminology, the routing

is done by a dispatcher.

The dispatcher takes all the information

known about the message, including the

protocol headers and any side information

from the configuration and creates a

context for the handler. It passes this

context and the payload of the message to

the handler. Some middleware, just before

passing the payload to the handler, maps

the content of the payload. For instance,

both IMS and CICS on mainframes map

messages from „green screens‟ from their

native data stream into the segment for the

handler. When sending messages from

CICS to CICS there is an optional

transform in and out. Similarly, XML

middleware can use XSL-T to transform

the message into another format suitable

for the handler, such as text or HTML. In

Java Enterprise Edition, JAX-B can

transform the message to native Java

objects. This enables the handler to be

independent of the form of the message

„on the wire‟.

The handler is responsible for doing what

is needed to manage the message. If the

handler is an application it will be stateful,

that is read and write persistent storage,

and will probably start by correlating the

message to some stored state. For instance,

if the handler is orchestrating other

services, it will need to look up the state of

the workflow using keys in the message,

and when it has completed it will need to

update the state before committing.

Application middleware is designed to

reply synchronously to the message

received, as illustrated below.

Listen

Dispatch

Handle

Figure 4 Synchronous Handling

Integration Middleware
Integration middleware has to act as a

relay. In general, this will be

asynchronous, as shown below which is

Basic Information Engineering

Enterprise Architecture Page 3

how, for example, a JMS message would

be handled.

Listen

Dispatch

Handle

Emit

Route

Figure 5 Asynchronous Handling

In order to act as a relay, the middleware

has to add a router, to decide on which

protocol to emit the message, and an

emitter to act as a protocol client.

When the protocol being listened on is

synchronous but the protocol being

emitted on is asynchronous, for instance if

the request comes in on HTTP but the

consequence of the request is sent on MQ,

then the pattern used is as shown below.

Listen

Dispatch

Handle

Emit

Route

Figure 6 Synchronous Listen with

Asynchronous Emit

When application middleware runs this

pattern, the listen and emit are part of a

single transaction and the transaction

either commits or rolls back. This relies on

there being a person as the requester who

decides whether to resubmit the

transaction or not. However, when dealing

with a message from another system, there

is no person to manage the transaction. In

this case there are effectively two

transactions going on in the relay. The first

transaction listens for a request and replies

when done. The second transaction, nested

inside the first, emits the handled message.

This is very important to grasp. In

handling messages as a relay, we do not

rely on a two phase commit. Rather we

use a nested transaction, each leg of which

may itself be a two phase commit. The

reason the whole relay cannot be a two

phase commit is that the relay has to take

control of the message. There is no person

at the requesting end to manage the

transaction. If we used a two phase

transaction then if the handler failed, the

message would roll back. The listener

would then retry the message and the

handler would fail again. Eventually, the

message would exceed its roll back limit

and would go to the error output. This

would be nearly useless as the message

would have no information on what went

wrong. Instead, if the nested transaction

fails, the outer transaction can decide

whether to retry, in which case the

message goes to a retry location, or to

error, in which case the message, with the

information about the problem, goes to the

error location. Then the outer transaction

can commit and go on.

If the handler needs to run a flow to

manage the message, for instance if it is

using SAP remote function calls to apply

the received message to an SAP system,

then it may need to emit several times as

shown below.

Listen

Dispatch

Handle

Emit

Route

Figure 7 Complex Handling

If the listener is for MQ and the emitter is

for SAP then the both the listen

transaction and the emit transaction can be

two phase. This enables the complex

handler to run successfully and atomically.

Two Phase Commit
The concept of a two phase commit was

invented during the 1970s as transaction

monitors were being developed at IBM

and Tandem. Jim Gray was the principal

researcher and implementer as he was

involved in the development of both IMS

and System R (the first distributed

relational database). We can do no better

than to quote his description of a two

Basic Information Engineering

Enterprise Architecture Page 4

phase commit.

“It is generally desirable to allow each

participant in a transaction to unilaterally

abort the transaction prior to the commit.

If this happens, all other participants must

also abort. The two-phase commit protocol

is intended to minimize the time during

which a node is not allowed to unilaterally

abort a transaction. It is very similar to the

wedding ceremony in which the minister

asks “Do you?” and the participants say “I

do” (or “No way!”) and then the minister

says “I now pronounce you”, or “The deal

is off”. At commit, the two-phase commit

protocol gets agreement from each

participant that the transaction is prepared

to commit. The participant abdicates the

right to unilaterally abort once it says “I

do” to the prepare request. If all agree to

commit, then the commit coordinator

broadcasts the commit message. If

unanimous consent is not achieved, the

transaction aborts. Many variations on this

protocol are known (and probably many

more will be published).”

When doing something in response to a

business event our handlers may have

more than one resource to manage. For

instance, the message may have been

received on a queue and the handler may

need to write to a database. In this case,

the queue and the database must be

coordinated to do all of their actions or

none of their actions. This is what the two

phase commit, in combination with a log,

allows us to ensure. The alternative to the

two phase commit would be to rely on

complex programming in every handler. In

other words, the transaction is a complex,

cross cutting concern.

Here is how it works. The model for two

phase commit transactions was

standardised by the Open Group when it

was still called X/Open. This model is

illustrated below.

Communications API

XA+

Resource API

Transaction
Manager API

XA/AX

Application

Transaction
Manager

Resource
Manager

Communications
Manager

Resource

Figure 8 X/Open Transaction Model

The actors in the diagram are: the

application program; the transaction

manager; the resource manager; and the

communication manager. If there is just

one resource manager and no transaction

or communication manager, then the

transaction is described as being local.

This would be the case when using SQL

START WORK to delimit SQL

transactions. If there in one transaction

manager and one or more resource

managers, then the transaction is global

(even if the resource managers are

themselves running on other machines). If

there is more than one communication

manager then the transaction is distributed.

X/Open proposed three standards. XA is

the standard for a transaction manager to

include a resource manager in a

transaction. This is implemented in Java

Extended Edition. AX is the standard for a

resource manager to include itself in a

transaction (dynamic registration). This is

not part of Java EE. Finally, XA+ is the

standard for distributing transactions.

X/Open never completed this

standardisation (it is just too difficult).

However, Java EE does have an

implementation of this, though you would

probably be mad to use it. So, in effect,

only XA is important. This is why Java

transactions are often called XA

transactions.

There are also three APIs: the API to the

resource (SQL or JMS say); the API to the

transaction (JTA in Java EE); and the API

to the communications manager. Note that

in the latest version of Java EE, all three of

these can be container managed. SQL if

you use container managed persistence,

Basic Information Engineering

Enterprise Architecture Page 5

JMS if you use a message driven bean,

and JTA if you use container managed

transactions.

In the case of a Java EE transaction, you

have to configure the EJB to use

transactions and register the resource

managers to use them before the EJB

executes. When the EJB is executed a

transaction is created and logged. When

the EJB uses the API to a resource, that

resource manager is added to the

transaction and its events logged. When

the transaction commits, the transaction

manager runs the first phase, prepare. It

asks each resource manager to prepare.

Once an RM has agreed to prepare it

cannot abort the transaction, which means

that the RM must log its important events

so that they can be read later for undo (roll

back) or redo (commit). If any RM refuses

to prepare, the transaction is rolled back.

Once all RMs have prepared, the TM

starts the second phase, commit. Each RM

is committed in turn. The time between

issuing „prepare‟ and then issuing

„commit‟ or „roll back‟ is known as the

„in-doubt window‟. During this time the

RMs are in doubt about whether to

commit or roll back. Finally, the TM logs

the commit. If there are any actions that

cannot be undone, they are done by the

RM at commit. In particular, message

PUTs are not actioned until commit.

The attributes of a global transaction are

that it is ACID. This is a term coined in

1983 by Andreas Reuter, here is Jim

Gray‟s definitions of ACID.

“Atomicity: A state transition is said to be

atomic if it appears to jump from the

initial state to the result state without any

observable intermediate states—or if it

appears as though it had never left the

initial state. It holds whether the

transaction, the entire application, the

operating system, or other components

function normally, function abnormally, or

crash. For a transaction to be atomic, it

must behave atomically to any outside

„„observer”.

Consistency: A transaction produces

consistent results only; otherwise it aborts.

A result is consistent if the new state of

the database fulfills all the consistency

constraints of the application; that is, if the

program has functioned according to

specification.

Isolation: Isolation means that a program

running under transaction protection must

behave exactly as it would in single-user

mode. That does not mean transactions

cannot share data objects. The definition

of isolation is based on observable

behavior from the outside, rather than on

what is going on inside.

Durability: Durability requires that results

of transactions having completed

successfully must not be forgotten by the

system; from its perspective, they have

become a part of reality. Put the other way

around, this means that once the system

has acknowledged the execution of a

transaction, it must be able to reestablish

its results after any type of subsequent

failure, whether caused by the user, the

environment, or the hardware

components.”

The combination of a log, locking and a

two phase commit ensures ACID

properties.

Transactional Messaging
An example of using transactions is the

use of transactional messaging. Messaging

and Queuing uses PUT and GET verbs. A

PUT sends a message, a GET reads a

message. Both are changes to queues as

GET is a destructive read in M&Q. A

typical message driven bean GETs from

one queue, updates a database and then

PUTs to another queue. This is illustrated

below.

Basic Information Engineering

Enterprise Architecture Page 6

Application

Start transaction

Read message

Commit transaction

Write message

Write database

Figure 9 Transactional Messaging

The application first GETs a message,

then writes to a database, then PUTs a

message and finally commits. If the

transaction were to roll back instead, then

the message is put back into the input

queue, the database is rolled back and the

message in the PUT queue is removed.

A scenario that we encounter quite often is

that an application that was used directly

by a person using an agent is changed so

that it is now accessed via another record

keeping application. Many designers fail

to notice that this now implies a

distributed transaction as illustrated below.

Front End Application Back End Application

Figure 10 Accidental Distributed

Transaction

The front end application now has its own

resource, shown as a drum, as well as the

resource in the back end. Therefore, a

synchronous request from the front end to

the back end implies a distributed

transaction. This does not scale as the two

phase commit blocks and requires a

session to remain in place until commit.

The right way to implement this is as

shown below with three transactions, not

one.

Front End Application Back End Application

Start transaction

Commit transaction

Start transaction

Commit transaction

Start transaction

Commit transaction

1

2

3

Figure 11 Three Transaction Model

The way to do this is to use three

transactions to make the change in the

back end application. The user makes a

request that causes a change to the front

end application. While holding the user

session, the front end puts a message to

the back end queue and commits. The

back end GETs from the queue, updates

the database and PUTs to the front end

queue (note that this is not a reply-to

message). The front end listens on the

queue, reads the database to get back to

the user session and completes the request.

BASE
The target enterprise architecture of the

1980s was to integrate through the

database and to use distributed

transactions to update a database across a

set of nodes. This architecture failed for

several reasons. Firstly, it didn‟t scale. The

application processing bottlenecked on the

database. Secondly, it was not possible to

update through views and so applications

were too closely coupled. Finally, the

distributed transaction was too slow and

too unreliable (as you scale up distributed

transactions, more and more of them fail

to commit). IBM created transactional

messaging as a way of distributing

transactions instead of two phase commit

and message passing replaced a shared

database as the approach to integration.

No longer did the architecture rely on

ACID transactions for integration (though

it still requires global ACID transactions

so that databases and queues can be used

Basic Information Engineering

Enterprise Architecture Page 7

in transactions). The replacement for

ACID is called BASE and stands for

Basically Available, Soft state, Eventually

consistent). At the heart of this approach is

the CAP theorem. This states that of the

three desirable properties of an

information system, consistency,

availability and tolerance to partition, you

can at most have two. As we are doomed

to have partitions, this leaves us with a

choice between availability and

consistency. As availability is usually a

must have for enterprise systems, that

means we have to live with a

compromised consistency. The way we do

this is to use business event sharing to

make each information system

autonomous and asynchronous. When a

master data change is made in one system,

it is propagated to all other interested

systems either by a hub (within a domain)

or by agreements (across domains).

REST
The approach we take to designing

applications uses the architecture of the

Web, Representational State Transfer, or

REST for short. REST has four principles:

1. All resources are addressed with a

URL

2. All resources have a uniform

interface. In standard HTTP this is

GET, PUT POST where GET is

safe, PUT is idempotent and

POST is neither.

3. All resources have multiple

representations

4. The application (user interaction

part) has its state driven by the

state of the current resource. This

is known as Hypertext as the

engine of application state or

HATEOS. Although this third part

is the least well implemented, it is

probably the single most

important part.

Change Verified Protocol
When applying changes to resources,

it may be necessary to manage

concurrency yourself. This is the case

if there are competing transactions for

the same resource (humans and queues

for example). The way this works is

that the change is applied in two

phases. The agent making the change

has to have the changed values it

wants to apply and also the previous

values it found in the resource before

it started the change. In the first phase

the object to be changed is read. This

can be done as part of a transaction

with „repeatable read‟ configured as

the level of concurrency. This locks

the resource as part of the transaction.

The values read are then compared to

the before values of the object that the

agent has kept. If these are the same it

is safe to apply the change. If they are

not the same then the object has been

changed before this change has been

applied and the agent needs to start the

race again.

Syntax and Semantics
An awful lot of what we talk about in

architecture seems to end up being

about distinguishing syntax from

semantics. Because of that, here is a

short introduction to what is usually

meant by these two terms. However,

be aware that there is more than one

definition of these terms and the

definition in use can change in other

contexts. Also, depending on context,

one person‟s semantics might be

another person‟s syntax.

Generally speaking, syntax is about

the form of things and semantics is

about their meaning. Examples of

syntax include XML which has rules

for what it is to be well formed. These

rules are purely syntactic. The fact that

the tags in XML are always delimited

by angled brackets adds nothing to the

meaning of those tags. Indeed, XML

evolved from SGML which evolved

from GML and in GML tags were

delimited by colons and dots. So <p>

in XML was :p. in GML. If a message

Basic Information Engineering

Enterprise Architecture Page 8

or file or data stream is converted

from XML to GML or JSON or some

other syntax, nothing changes in the

meaning of the message.

Semantics, however, is about the

meaning of the things you are dealing

with. In a relational database these are

relations and tuples (or tables, rows

and columns). In a database model

these are entities, relationships and

attributes. In a message these are data

elements and attributes. In a relational

database the possible values of a

column are known as its domain.

Specifying the domains of the

elements of a relationship is a

semantic specification. Some people

get confused over domains and think

of them as syntactic. This is because

when a domain is specified it is

necessary to give it some syntactic

representation. If the attribute is

Gender and we say it can be „M‟ or

„F‟ then the meaning inherent to the

domain is semantic but the choice of

„M‟ and „F‟ rather than „0‟ and „1‟ or

„H‟ and „F‟ (which a French modeller

might choose) is syntactic.

In the world of XML, a W3C XML

Schema is semantic as it provides the

structure of the document and the

domains of its elements. Similarly an

XSL-T transform from one schema to

another is also a semantic thing as it

equates what something means in one

message with what it means in

another. Semantic modelling is the

term used for data base modelling

using entities, attributes and

relationships.

Normalisation
Normalisation is as old a concept as

the relational database. In his first

paper on the relational data model,

Ted Codd noted the importance of

normalisation in order to remove

update anomalies. This section on

normalisation is included as it is an

often misunderstood concept in the

design of databases.

The important thing to know is that

normalisation is not a way of

discovering business rules. In fact, the

opposite is the case, you need to know

the business rules in order to do the

normalisation. Academics describe

five normal forms (first, second, third,

fourth or Boyce-Codd and fifth). They

are progressive, in that if you are in

say fourth normal form then you are

also in third, second and first normal

form. Also, all of them are about

dealing with „dependencies‟, that is, if

John is the child then Seymour is the

father (the choice of John determines

Seymour) or, conversely, you cannot

have the child unless there is a father.

In most cases, if you have a model in

third normal form then it is likely to

be in fourth and fifth normal form

unless there are some many to many

relationships involved. This is because

third normal form removes functional

dependencies, whereas fourth and fifth

removes many valued dependencies.

For instance, where you have students

taking courses, faculties offering

courses and teachers employed in

faculties. There are many to many

relationships between students and

faculties and students and teachers and

students and courses. In general,

eliminating dependencies also

eliminates redundant data, though

some redundant data may always be

present even in fully normalised

relations. This is not the primary aim

of normalisation, but does help with

maintenance, scaling and integrity.

If normalisation is about removing

update anomalies it is probably a good

idea to understand what they are. An

update can be an insert, a change or a

delete. If I had a table of employees,

their addresses and their skills, with a

row for each skill, then changing the

address has an update anomaly

because I might forget to change one

row leaving the address inconsistent.

If the employee table has the

employee id, name and project, then

we cannot add an employee who is not

Basic Information Engineering

Enterprise Architecture Page 9

yet assigned to a project, this is an

insert anomaly. If an employee

finishes one project but has not yet

started another, then deleting the

current row also deletes our

knowledge of the employee and their

address, which is a delete anomaly.

Briefly, then, here are the normal

forms. A relation is in first normal

form if each attribute only has one

value. In a table of books, there can

only be one value for the author field

and the field is not repeated. To record

that a department has more than one

employee you need to repeat the book

row. A relation is in second normal

form if it is in first normal form and

each attribute depends on the whole of

each key. In a table of employees at

locations, the address of their location

only depends on the location part of

the key. You can say that first normal

form is about redundancy of data

across a row, second normal form is

about redundancy of data down a

column.

A relation is in third normal form if it

is in second normal form and each

attribute is independent. This means

that there are no transitive

dependencies, which in turn means

that there are no functional

dependencies. In a table of employees

with departments, the department is

functionally determined by the

employee key (an employee has one

department) but the department

location is not determined by the

employee key except through the

department key.

It used to be that we thought there was

one data model for the enterprise and,

if it was normalised, it represented at

some level, the business rules for the

enterprise. But this failed to

acknowledge the importance of

separating the events part of the

enterprise information system from

the content part of the enterprise

information system. In the content part

there are no updates and so no update

anomalies. Therefore normalisation is

not required, in fact it is strongly

deprecated. We gradually learned that

the content part of the enterprise

information system is modelling a

completely different aspect of the

enterprise.

Facts and Dimensions
In the events part of the enterprise

information system we are concerned

with managing events and storing

enough information about the events

that we can process the next event.

This requires knowing the pre-

condition and post-condition for the

event handling. Twinkling data bases

are those that are constantly changing

as they handle events. Each change of

the data base must take it from a

consistent state to a new consistent

state. The data base must be immune

if possible from update anomalies.

The state of the data in the data base

must represent a set of true statements

about the enterprise. The way we do

this today is to use normalised

relational data bases described by

entity attribute relationship semantic

models.

However, we no longer consider the

data model to be universal. That is, we

do not pretend to have a single model

for the enterprise. This is for two

reasons. We discovered it was not

possible to scale a single data base to

record all events. The Sysplex project

I worked at when at IBM in the late

80s was created because of the

database scaling problem. More

significantly, we also discovered that

one of Ted Codd‟s conditions for the

relational model, that it must be

possible to update using the views,

was not achievable with the

technology at hand. In fact,

increasingly, it looks as though it will

never be possible to update through

views. This made it impossible to

integrate different applications

through the database which in turn

Basic Information Engineering

Enterprise Architecture Page 10

lead to a new way of integrating,

through messaging. Again, this was

why we created transactional

messaging at IBM in the late 80s.

If normalised relational databases are

the norm for events, what is the

equivalent for content? And what

about the enterprise are we modelling

in the content database? It seems that

the right model for content is the fact

and dimension model where we have

normalised fact tables consisting of

two parts. The first part is a set of

facts, such as the quantity and the

price of transactions that have been

recorded. The second part is a set of

keys relating to dimensions that can be

used to slice and dice the facts. Each

dimension represents a role played by

a party to the transaction. Typical

dimensions are buyer, selling, agent,

product, place (political and physical),

time, line of business, contract terms

and business function. The dimensions

are made up of master and reference

data whereas the facts are made up of

transaction data.

What we are modelling in such a

database is typically a process

represented by each fact table.

Processes, in English, are usually

words that end with …ing (gerunds in

grammatical terms). Examples include

selling, buying, hiring, incurring risk,

accounting and so on. Unlike

normalised databases which are

modelled using entities attributes and

relationships, multi-dimensional

databases are properly modelled using

a state machine. The business events

represent transitions in the state

machine. The fact tables record all the

transitions. The dimensions enable us

to slice and dice the process. With this

model, it is possible to answer any

conceivable question about a process.

The details of multi-dimensional

model occupy many books. But very

few tell us how to relate the state

model to the fact table. Getting that

right is a major research aim of our

EA practice.

About John Schlesinger

John Schlesinger is a Principal at Atos Consulting where he leads its Enterprise Architecture

practice. John is an advisor to enterprises specialising in middleware and integration

architecture. He has lead integration architecture development in retail banks, investment

banks, retailers and manufacturing, both for integrating applications and for integrating

information.

John has worked both as a consultant and also as a developer with software companies. He

has taken over two dozen program products to market at IBM, Information Builders, One

Meaning, SeeBeyond and iWay Software. These products included the world’s most

successful commercial software (CICS) and the world’s most successful data middleware

(EDA/SQL). John also led the Architecture department at Dun and Bradstreet when its IT

department went global.

A member of the ACM and the IEEE, John has an MA in Physics and Philosophy from Oxford

University and a Post Graduate Diploma in Software Engineering from Oxford University.

John has spoken at numerous conferences including the CIO Cruises run out of New York,

during one of which he was the first speaker on after the collapse of the World Trade Towers

in 2001.

John can be contacted at john.schlesinger@atosorigin.com

