
A Compelling but Specious Argument

Enterprise Architecture Page 1

Introduction
This paper provides an opinion on service
oriented architecture.

We have been living with the buzz word
SOA, service oriented architecture, since

1998. This opinion piece will argue that

SOA when applied to integration, that is
integrating applications you already have,

doesn‟t work. It will also argue that using

SOA for new applications sort of works,

but you‟d probably be better off using
other approaches, such as REST. To say

that this opinion puts us out on a limb is an

understatement. SOA is everywhere in our
industry except one place, customer

success stories. Here is what Anne

Thomas Manes of Burton Group says:

“… I think I've become a bit jaded from

the interviews I've conducted thus far. It

has become clear to me that SOA is not

working in most organizations.”
1

This opinion tries to explain some of the

reasons why this might be the case, what

we think you should be doing instead and
even looks at a couple of success stories.

The thesis of this opinion is that the

arguments raised in favour of SOA by the

marketplace to its customers are
compelling, but they are specious. The

Oxford English Dictionary defines

specious as:

“superficially plausible, but actually

wrong”

We are saying that SOA is wrong.

What is SOA?
Of course, if we are going to attack SOA
we have to say what it is. And, of course,

all those who think we are wrong will tell

us that we are attacking the wrong SOA.
Their SOA is much better. Our response is

to say, show us how it worked for your

customers and we‟ll agree. We have been

working with a customer that has run
aground trying to use SOA for integration.

They were using the SOA reference

architecture from the Open Group. So we

1
 From (Manes, 2008)

will use the Open Group SOA reference

architecture to define SOA. The Open
Group diagram from

http://www.opengroup.org/soa/source-

book/ra/perspec.htm is shown below:

Figure 1 Open Group SOA Reference

This diagram is very similar to the IBM

reference architecture shown below.

Figure 2 IBM Reference Architecture for SOA
2

Both references rely on the concept of a

service consumer and a service provider.

The essence of this pattern is shown
below:

3

Figure 3 Definition of a Service

The IBM diagram makes it clear that a

consumer can be either a person (that is, a

person‟s agent) or another system. It is not
explicit but clearly the service request is

made first and the service response is

received after. Also, there is no need for

the request and response to be
synchronous; they can be two one-way

messages that are correlated in some way.

2 From (Arsanjani, 2007)
3 From http://www.service-

architecture.com/web-services/articles/service-

oriented_architecture_soa_definition.html

http://www.opengroup.org/soa/source-book/ra/perspec.htm
http://www.opengroup.org/soa/source-book/ra/perspec.htm

A Compelling but Specious Argument

Enterprise Architecture Page 2

However, there is an implicit assumption

that the consumer cannot proceed, in some
sense, unless there is a response.

The Open Group and OASIS have been

cooperating on the definition of SOA, so it

is useful to include the OASIS definition:

“Service Oriented Architecture (SOA) is a

paradigm for organizing and utilizing

distributed capabilities that may be under
the control of different ownership

domains.”
4

This is a very good definition of the

purpose of SOA; we really do need a
paradigm for organising and using

capabilities under different ownership. In

the rest of this document we shall use the
Open Group diagram and the OASIS

definition of purpose as our definition of

SOA. To summarise, SOA is a way of
organising and using capabilities under

different ownership where the capability

provides a service that is used by a

consumer and may be mediated by
workflow.

Transactions
Our first problem with SOA concerns
transactions, which for us are the

mechanism used for the capturing of
business events. We will show that

thinking about transactions imposes severe

constraints on services, contrary to the
naïve view of services.

In the environment of Figure 3 Definition

of a Service, we need to ask the question:
are the provider and consumer

participating in a single transaction or in

different transactions? The OASIS

definition of „different domains of
ownership‟ answers this for us. If they are

owned separately, they must (in general)

be in different execution environments and
so should be assumed to be in different

transaction environments. It might be that

sometimes, as a special case, they are in
the same transaction environment, but in

general not.

Given that we are assuming that the

consumer requests the provider to do

4
 From (MacKenzie, 2006)

something in one transaction environment

and the provider responds in another, it
clearly makes a difference whether a

transaction is needed. If the provider

changes the state of some resource (a file,

database, queue, or equivalent) then a
transaction is needed. If the provider is

just supplying information, then a

transaction is not needed. This analysis
generates the four cases summarised

below:

Table 1 Characterisation of Service Interaction

 Provider

Transaction No

Transaction

C
o
n
su

m
er

T
ra

n
s

ac
ti

o
n

 Integration or

Orchestration
(1)

Autonomy

(2)

N
o

T
ra

n
sa

ct
i

o
n

New
application

transaction

(4)

New
application

request

(3)

The case where both are transactional is

dealt with in Orchestration and Integration
below. The case where the consumer is

transactional but not the provider is dealt

with in Autonomy below. The two cases
where the consumer is non-transactional

are dealt with in Writing New

Applications below.

Integration (1)
Here we discuss the case where a
consumer requests a transactional service

from within a transaction of its own.

We can implement a service with
transactions at each end using a distributed

two phase commit transaction. This is

called the „Managed, shared global

transaction pattern‟ by (Booz, 2007).
However, it is very difficult to get

different transaction managers to distribute

transactions. Even where it is possible to
distribute the transaction, it is well known

that this approach does not scale. For

instance eBay give as a scalability best

practice “Avoid Distributed Transactions”
(Shoup, 2008). At best, this is a corner

case for use when you have to, not a

A Compelling but Specious Argument

Enterprise Architecture Page 3

general way to architect interaction. In

fact, we believe that ACID
5
 is an

inappropriate architecture for distributed

systems, BASE
6
 is the superior approach.

Although it is admirable that Service

Component Architecture (SCA) has taken
the trouble to create a specification (Booz,

2007) for ACID behaviour, it is not

supported by any existing SCA
environments and, even if it were, would

not be appropriate for reasons of reliability

and scalability.

Our experience is that many of our clients
do not appreciate this nuance - that calling

a service implies a distributed transaction.

In a current engagement we are seeing
clients designing synchronous

request/reply between the resource

management parts of existing applications.
It is worth noting that transactional

messaging, which many businesses use,

does not allow you to make this mistake.

If you send a message to another system
using MQ or JMS as part of a transaction,

the message is not sent until the

transaction has committed. This is, of
course, perfect for event driven

architectures. For those who naively think

that a service can be called from a
transaction it is tragic, because they are

likely to deadlock their own transactions
7
.

Another lost nuance is the difference

between intention and causality.
Sometimes one system needs another to do

something before it can continue, such as

an ATM issuing money, which has to wait
for the bank to authorise the transaction. In

this case, the first system intends to

integrate with the second. Intention

implies orchestration. Often, though, we
just want an action at one service to cause

an action at another. For instance, if I

update my name and address in the
mortgage application I want that to

5 ACID stands for Atomic, Consistent, Isolated

and Durable. A term coined by Andreas Reuter

in the early 1980s.
6 BASE stands for Basically Available, Soft

state, eventually consistent. See (Pritchett,

2008).rag
7 Deadlock occurs because the transaction

waits for a response that cannot be received

until the transaction commits.

percolate through to the account

management system, but there is no
intention in the mortgage system to

orchestrate the account management

system. In fact, this update might go to

many systems. Indeed, our current client is
implementing a system that updates

account data on five other systems when it

itself makes an update. There is no need
for the first system to wait for the others to

complete. This is the integration use case.

SOA doesn‟t work for this use case. There

is no need for an application to call
services in other applications in order to

integrate the two applications. For

example, if you introduce a new sales
order process using a package such as

SAP, there is no need for SAP to

orchestrate the applications in your
warehouses that fulfil the orders. You just

need to send the orders to the warehouse.

If something happens in one application

(say, we take an order) and that requires a
consequence in another (say, we execute

the order) then there is no need for

orchestration. All we need is for a message
to go from the first system saying „I just

took this order‟ which is transformed into

a message for the second saying „execute
this order‟. Effectively we are replacing

swivel chair
8
 integration with a message.

Orchestration (1)
Here we discuss the case where the
consumer is a business service requesting
the provider to do some work on its

behalf. In this case, the consumer intends

to have the provider do some work for it.

For instance, when I take money out of an
ATM, the device handler for the ATM has

to get the bank account system to

authorise the withdrawal.

The way it does this, without using

distributed two phase commit, is the three

transaction model - see the basics of
information engineering (Schlesinger,

Basics of Information Engineering, 2010).

8 Swivel chair integration is where a person

updates one system and then swivels on their

chair to another screen and keyboard to update

a second system.

A Compelling but Specious Argument

Enterprise Architecture Page 4

This case, where one system makes a

request of another using three transactions,
is the base case of orchestration. Each

activity in an orchestration workflow

implies one such trio of transactions. In

each case the consumer has to worry about
errors, retries and compensation. The

return message must include not just the

expected reply, but all the possible
application failure responses (such as

„authorisation denied‟) and all the

middleware failure responses (such as

„service not found‟). The consumer must
set a time out and decide when to retry. In

the case that the request succeeds but the

consumer subsequently aborts, there must
be another service for compensating the

original service.

Note that when we implement
orchestration, we are always implementing

new business capability. This is because

the consumer, by definition, cannot

continue until the service provider
responds. Therefore orchestration is never

an appropriate approach for integration of

existing applications. So the argument that
orchestration helps you integrate is

specious.

SOA is compelling because it offers the
ability to orchestrate a set of services

designed to do one thing so as to have

them do another. But orchestration is

much more complicated than the naïve
advocate realises. Both the service

consumer and the service provider must

have been written to do the orchestration.
There is no example we know of where

one application orchestrates another, at

scale, except where both were written for

that purpose. The argument that it is
possible to have more than one

orchestration of a set of services, at scale,

is compelling but specious.

Autonomy (2)
We come now to the case where both the
consumer is transactional but the provider

is „read only‟, that is, there is no implied

transaction at the provider. In this case, the
consumer is requesting information from

the provider that the consumer does not

have. For instance, in order to decide
whether to make a payment in a retail

banking system, I might request the

balance of an account from a deposit
management system.

Leaving aside the problem of mapping the

data received into my own view of data

(see Semantics below), the act of making a
synchronous request during a transaction

(for example, the authorisation of a

payment in the example above) delays the
service and also makes it less reliable.

Also, if the called service is not available,

the transaction will fail.

To get around this reliability issue, as the
consuming service scales, caching is used.

This enables the consumer to get the

answer without interacting with the
provider.

However, this introduces the question of

when the data is out of date, that is,
knowing when the account balance has

changed. The easiest way to solve this

problem is to send a message from the

provider to the consumer when a balance
changes. If we do this, we never need to

call the service.

So our argument against SOA is that one
business service should never call another

for read only, instead we should arrange

for a message to go from the provider to
the consumer informing when the data has

changed. This is the essence of, for

instance, financial market data where

stock ticks are sent to all those systems
that need to know the current price. Scaled

stock trading systems never makes a

request for a price.

Writing New Applications
(3 and 4)

We now address the case in Table 1
Characterisation of Service Interaction

where the consumer of the service is not

transactional. It is useful, to make sense of

this, to separate the application into two
parts: a part that interacts with the user

(the agent in Figure 6 Information

System), from the part that manages
transactions (the information resource in

Figure 6 Information System).

If the consumer of a service is
transactional, it must be the information

A Compelling but Specious Argument

Enterprise Architecture Page 5

resource part of some business service.

Conversely, where the consumer of a
service is non-transactional, it must be the

user interface part of an application, or an

agent acting on behalf of a person.

If we are making it possible for a user to
access services that were not previously

available, we must be writing a new

application. If the service were already
available, we would not need to be doing

the work. If we are replacing a service

built into the application with a shared

service then we are again, writing a new
application to replace the one we had

before. Indeed, some companies we

consult with have created shared services,
and have then versioned the application to

their customers while they move from the

built-in to the shared service
implementation.

Again, there is a serious constraint where

the consumer is non-transactional and the

provider is transactional. In order to
maintain the consistency of the

information, a single agent interaction can

only call one transactional service. If the
agent were to call more than one

transaction then there is a possibility that

the interaction would fail after doing one
transaction but before completing the next.

This would leave the two services

inconsistent and the user would have no

way of knowing what had or had not
worked.

SOA offers the compelling argument that

you can compose services from different
applications to create a new service. This

is only true, from a transactional point of

view, if all the services run under the same

transaction manager. SOA mistakenly
frames the problem of service composition

as a component problem, whereas it is

actually a distribution problem (recall the
OASIS statement of what SOA was for).

The SOA argument is specious because in

a distributed environment only one service
in an interaction can be for update.

Semantics
Having dealt with transactions, we now
deal with semantics. This generates a

whole new set of problems for SOA. The

problem of integration is not really a

problem of interoperability, it is
fundamentally a problem of semantics. In

the naïve SOA approach one application

can call a service in another without

worrying about the semantics of the
service being called, just as naïve SOA

didn‟t worry about the transactions. For

example, SAP now has a set of services
you can call using Web services, its ESA

offering. Each service has a WSDL

describing it. A program that calls such a

service has to map the data elements in the
WSDL into its own data elements. This

mapping has to be right or data will be

inconsistent between SAP and the calling
application.

Getting the Composition
Right

How do we ensure that the mappings
make sense is the first problem.

Again, it is worth looking at Service
Component Architecture to see how this

problem is addressed there. The SCA

specifications do not address this

specifically; however (Caine, 2006)
addresses the problem. He describes the

problem in the context of composing

trivial services for Area and Weather:

“At the data processing level the elements

of these different messages could be the

same data type e.g. decimal for XML

schemas would be xsd:decimal. Without
composition validation it would be

possible to combine Area and Weather in

a service composition that has no real
meaning.”

He proposes taking the standard SCA

approach

Figure 4 Service Component Architecture

And enhancing it with semantic

A Compelling but Specious Argument

Enterprise Architecture Page 6

constraints

Figure 5 Enhanced Service Component
Architecture

These constraints make sure that you map

data elements that actually match.

Of course, there are no implementations of

this available, and there are no examples
of services specifying their constraints.

For instance, SAP ESA provides no such

metadata. Nor does SCA make it clear that
translation is required even though the

namespaces of the WSDLs defining the

services are different from the name space
of the composed service. SOA makes the

compelling argument that you can

compose services to create new programs,

but this argument is specious because it
ignores the need to get the semantics of

the composition right. Naïve customers

compose services inappropriately and
create inconsistent and bad data.

Tight Coupling
By using the SAP WSDL in your program
to call the service, you are tightly coupling

your application to SAP. Your program
has compiled the SAP interface into its

code. If anything changes, you have to

recompile or the service invocation is
broken.

We have long known that the way to break

tight coupling of this type is to introduce

two transforms. The first transforms from
the semantics of the service consumer to a

neutral intermediate form. The second

transforms from the neutral form to the
form of the service provider (Schlesinger,

Integration Architecture, 2010).

SOA provides the compelling argument

that services can be composed but fails to
point out that using the interface of the

provider in the namespace of the consumer

creates brittle tight coupling. This can be
mitigated by using two transforms, but

SOA architectures like WS-* and SCA

ignore this, as discussed above. The

argument is specious because all the
benefits that are supposed to accrue from

the sharing of the service are lost if

everyone sharing the service has to use the

same interface in their code.

Ownership
Remember the OASIS definition of SOA:

“Service Oriented Architecture (SOA) is a

paradigm for organizing and utilizing

distributed capabilities that may be under
the control of different ownership

domains.”

We now look at some of the implications
of those telling words, „different

ownership‟. What this means is that the

service consumer may be separately
owned from the service provider. For

instance, the service consumer might be in

HR and the service provider in Finance.

Similarly, the consumer could be in a
customer company and the provider could

be in a supplier company. This means that

there is no overall owner of the consumer
to provider relationship. In order for the

provider to provide the service, there has

to be something in it for the provider or it

wouldn‟t bother to provide it. Quoting
Anne Thomas Manes again, from the same

article:

“More to the point, the techies have not
been able to explain to the business units

why they should adopt a better attitude

about sharing and collaboration--which is
the fundamental cultural shift required for

SOA to succeed. The pervasive attitude is

"What's in it for me?" As one of my

interviewees said, "Altruism is not an
enterprise strategy"”

SOA offers the compelling argument that,

if an enterprise only offers 50 services,
there should not be a need for 2000

applications to provide them. However,

the fact that the IT crowd can see that
there is no need for the same service to be

implemented in two different business

units, does not imply that these two units

should share a service. Business systems
are owned by business owners, not by IT.

This is at the heart of our One Level

approach (Schlesinger, One Level

add (p1 : d ecima l, p2 : decim al) : decim al

averag e (p 1[] : decim al) : d ecima l

conver tCtoF (celsius : deci mal) : decim al

conver tFto C (far enh eit : de cimal) : de cimal

calcRe ctArea (leng th : d ecima l, bre adth :

decima l) : de cimal

Area

Arithmetic

Weather

can be related

can be related

semantic
runtime

implementation

A Compelling but Specious Argument

Enterprise Architecture Page 7

Enterprise, 2010). Just because there could

be a single service for a capability does
not mean that the business has to own it

that way. Sharing the service would

require the business to reorganise to assign

that capability to a single business unit.
The owner of that unit would then assume

ownership of all the services that

implement that business capability. That
owner might then decide to provide a

single shared service to all the consumers.

However, there might still be good reasons

why the business owner might provide
multiple services. For instance, the service

might be say an insurance industry

standard for some users, but others might
use a banking industry standard for the

same service. Alternatively, it might make

sense to keep two implementations if you
have two brands, in case the brands

separate (like Shell and BP did in 1976).

The SOA argument about sharing services

is specious because it forgets that business
services have business owners and they

are organised the way they are for

business reasons, not to make IT more
efficient.

Fundamental Confusion
We believe that there are two fundamental
confusions in SOA. The first is the

confusion between developing new
applications, on the one hand, and

integrating applications on the other hand.

The second confusion is a category error
9

in the way SOA distinguishes process

workflows from applications. In figures 1

and 2 above, business processes are shown

as something different from operational
systems. This is true at design time, but

not at run time. Once a business process is

deployed it becomes an operational system
like any other.

All the problems we see with SOA stem

from these two confusions. To clear them

9 From

http://en.wikipedia.org/wiki/Category_error

“A category mistake, or category error, is a

semantic or ontological error by which a

property is ascribed to a thing that could not

possibly have that property.”

up consider what an information system is.

It is the interaction of a person with a
business system as shown in Figure 6

Information System.

Figure 6 Information System

The essence of service orientation is

evident here – the separation of the human

interaction part of the application from the

resource management part. This we agree
with, indeed it is at the heart of our Inside

Outside approach (Schlesinger, Inside

Outside, 2010). When a person interacts
with an information system there is always

a request and a reply. So this is indeed a

service as shown in Figure 3 Definition of
a Service. However, when we introduce a

second person and business system we get

two new kinds of interaction as shown in

Figure 7 Multiple Information Systems.

Figure 7 Multiple Information Systems

The diagram shows that each person
interacts with an information resource to

create an information system, but that, in

addition, the information resources can
interact with each other and the people can

interact with each other. The interaction

between the information resources is
integration, the interaction between people

is communication.

If we enable the agent for a person to

access a new information resource, then
we are in effect writing a new application.

Information
Resource

InteractionAgent

Information
Resource

Information
Resource

C
o

m
m

u
n

ic
at

io
n

In
te

gr
at

io
n

Agent Interaction

InteractionAgent

http://en.wikipedia.org/wiki/Category_error
http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/Ontology

A Compelling but Specious Argument

Enterprise Architecture Page 8

Figure 8 New Application

The idea that creating an information

resource for sharing is an example of

integration, which we see as central to
SOA, is a category error. Actually,

integration does not change the

capabilities you have; it just makes it

possible to have an event in one
application cause an event in another.

Whereas people use request-reply

interaction, integration is always a one-
way message. Whereas request-reply can

be for information (read only) or for

transaction (write and update), integration
is only ever for transaction.

Writing an application by mistake is still

the number one mistake you can make

when doing integration and SOA applied
to integration almost forces you into this

error.

Conclusion
In a speech in the House of Commons on

11 November 1947, Winston Churchill
said:

“No one pretends that democracy is

perfect or all-wise. Indeed, it has been said
that democracy is the worst form of

government except all those other forms

that have been tried from time to time.”

This might be true of SOA. It might be

that, for all its faults noted above, SOA is

the best of a bad lot. We do not think so.

We believe that business events provide a
much better architecture for integrating the

enterprise. We describe how this works in

(Schlesinger, Integration Architecture,
2010). In our experience event based

integration is far quicker to implement, far

more robust, far cheaper to build and own

and far easier to scale. SOA is a

compelling but specious argument.

Application

Application

Information
Resource

Information
Resource

C
o

m
m

u
n

ic
at

io
n

In
te

gr
at

io
n

Agent Interaction

InteractionAgent

A Compelling but Specious Argument

Enterprise Architecture Page 9

Works Cited
Arsanjani, A. (2007 , March 28). Design
an SOA solution using a reference

architecture. Retrieved September 30,

2010, from IBM Developer Works:
http://www.ibm.com/developerworks/libra

ry/ar-archtemp/

Booz, D. (2007, December 3). ACID

Transaction Policy in SCA. Retrieved
October 1, 2010, from Service Component

Architecture Specifications:

http://www.osoa.org/download/attachment
s/35/SCA_TransactionPolicy_V1.0.pdf?ve

rsion=1

Caine, J. (2006, October). The Open
Group. Retrieved October 1, 2010, from

Service Domain Spaces v1.0:

https://www.opengroup.org/projects/si/upl

oads/40/13836/Service_Domain_Spaces_v
1.0_SWESE2007.doc

MacKenzie, C. M. (2006, October 12).

Reference Model for Service Oriented
Architecture 1.0. Retrieved September 30,

2010, from OASIS: http://docs.oasis-

open.org/soa-rm/v1.0/

Manes, A. T. (2008, March 9). Looking for
SOA Success Stories. Retrieved September

30, 2010, from Burton Group Blogs:

http://apsblog.burtongroup.com/2008/03/l

ooking-for-soa.html

Pritchett, D. (2008, July 28). Base an
ACID Alternative. Retrieved October 06,

2010, from ACM Queue:

http://queue.acm.org/detail.cfm?id=13941

28

Schlesinger, J. (2010, July 22). Basics of

Information Engineering. Retrieved July

22, 2010, from Atos Livelink CIO
Advisory:

https://km.atosorigin.com/livelinkdav/nod

es/45275526/Architecting the

Enterprise/Basics of Information
Engineering.pdf

Schlesinger, J. (2010, July 22). Inside

Outside. Retrieved July 22, 2010, from
Atos Livelink CIO Advisory:

https://km.atosorigin.com/livelinkdav/nod

es/45275526/Architecting the
Enterprise/Inside Outside.pdf

Schlesinger, J. (2010, July 22). Integration

Architecture. Retrieved September 1,

2010, from Atos Origin Livelink:
https://km.atosorigin.com/livelinkdav/nod

es/53601095/Integration Architecture.pdf

Schlesinger, J. (2010, July 22). One Level
Enterprise. Retrieved July 22, 2010, from

Atos Livelink CIO Advisory:

https://km.atosorigin.com/livelinkdav/nod
es/45275526/Architecting the

Enterprise/One Level Enterprise.pdf

About John Schlesinger

John Schlesinger is a Principal at Atos Consulting where he leads its Enterprise Architecture

practice. John is an advisor to enterprises specialising in middleware and integration
architecture. He has lead integration architecture development in retail banks, investment

banks, retailers and manufacturing, both for integrating applications and for integrating

information.

John has worked both as a consultant and also as a developer with software companies. He

has taken over two dozen program products to market at IBM, Information Builders, One

Meaning, SeeBeyond and iWay Software. These products included the world’s most

successful commercial software (CICS) and the world’s most successful data middleware
(EDA/SQL). John also led the Architecture department at Dun and Bradstreet when its IT

department went global.

A member of the ACM and the IEEE, John has an MA in Physics and Philosophy from Oxford
University and a Post Graduate Diploma in Software Engineering from Oxford University.

A Compelling but Specious Argument

Enterprise Architecture Page 10

John has spoken at numerous conferences including the CIO Cruises run out of New York,

during one of which he was the first speaker on after the collapse of the World Trade Towers
in 2001.

John can be contacted at john.schlesinger@atosorigin.com

